NCF参数化建筑论坛
标题:
关于我最喜欢的斐波那契数列
[打印本页]
作者:
sgrylicheng
时间:
2012-3-4 15:50
标题:
关于我最喜欢的斐波那契数列
斐波那契数列
斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。
随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……
从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:
奇数项和偶数项是
指项数的奇偶
,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)
为什么会提到这个呢?还是因为这个题目:
登录/注册后可看大图
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:
1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1。
2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)。
3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1。
4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)。
5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1。
6.f(m+n-1)=f(m-1)·f(n-1)+f(m)·f(n)。
利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
斐波那契数列的整除性与素数生成性
每3个数有且只有一个被2整除,
每4个数有且只有一个被3整除,
每5个数有且只有一个被5整除,
每6个数有且只有一个被8整除,
每7个数有且只有一个被13整除,
每8个数有且只有一个被21整除,
每9个数有且只有一个被34整除,
.......
我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)
斐波那契数列的素数无限多吗?
斐波那契数列的个位数:一个60步的循环
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
斐波那契数与植物花瓣
3………………………百合和蝴蝶花
5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花
8………………………翠雀花
13………………………金盏和玫瑰
21………………………紫宛
34、55、89……………雏菊
斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。
作者:
zhiaixu2010
时间:
2012-3-4 19:01
每日一顶~楼主不错
作者:
tonytcl
时间:
2012-3-4 19:29
看到各种函数就怕怕啊。。。
作者:
zhouningyi1
时间:
2012-3-5 01:55
哈哈 不会是源于数学的美学世界吧斐波那契数列其实非常广泛,竟然有杂志是专门研究这个的
作者:
qq240842634
时间:
2012-3-5 09:17
每日一学,谢谢
作者:
禁忌
时间:
2012-3-5 10:04
细腻!顶支持一下
作者:
zhiaixu2010
时间:
2012-3-5 15:40
犀利哥~~~~~
作者:
sgrylicheng
时间:
2012-3-5 19:33
是啊,正好发现那里有,就直接贴过来了。。。
4#
zhouningyi1
作者:
霍拉旭
时间:
2012-3-5 20:49
感谢分享,学习一下
作者:
aqua9095
时间:
2012-3-5 21:54
额,要不要这么强大?果然是强大的论坛,技术宅的天堂啊
作者:
hexianghai
时间:
2012-3-6 08:16
高手中的高手!{:3_52:}
作者:
iknowhy
时间:
2012-3-6 11:54
呵呵,自然哲学的数学原理
作者:
yinlu1320lu1320
时间:
2012-3-6 18:27
不错的帖子!!!!
作者:
benchen
时间:
2012-3-6 20:33
斐波那契啊啊啊啊啊啊啊
作者:
云浮
时间:
2012-3-7 09:36
呵呵,楼主犀利
作者:
范李只
时间:
2012-3-10 18:41
痔疮分内痔,外痔和混合痔,但往往都要通过手术来治疗,手术的昴贵费用不说,又要身体受苦,却 很多时候没法真正得到治疗,我身边的很多朋友是花钱找罪受,而我是深受其害,还好认识一个朋友家中 祖传的一个中药秘方,不开刀,不受苦,只要三贴中药,不管内痔,外痔还是混合痔,都可以立马根治! 药到病除,还可养颜美容!本人介绍很多人吃,效果都非常好!现在推广出来,让大家不开刀,就可以马 上治好,出售中药三贴根治痔疮,只需三天时间根治痔疮。有需要的话,可以联系我的:18046201030 1160573834 邮箱:
1160573834@qq.com
地址:厦门同安区西柯镇吕厝村39号
作者:
晓风残月86
时间:
2012-3-17 18:55
长见识了 谢谢楼主了
作者:
yinlu1320lu1320
时间:
2012-3-27 21:40
不错的帖子!!
作者:
ashes13
时间:
2012-3-30 13:15
多谢分享~~~
作者:
shawnzhao
时间:
2012-4-30 21:28
kankan!!!!!!!!!!!!
作者:
方木
时间:
2012-8-17 16:43
跟犀牛建模有关系么,,,,,,
作者:
kzseL
时间:
2012-8-18 11:25
支持啊!手工当的!!!!
作者:
jzw604
时间:
2012-9-29 23:31
顶一顶·········
作者:
qgx888
时间:
2013-1-30 15:31
好复杂的数学式子,看不太明白。
作者:
JACK...
时间:
2017-2-13 14:20
有人说将斐波那契曲线用于很多自然形象很牵强,其实我觉得这正是我们观察自然生物状态,得出自然规律,更好的了解生活的大自然环境的一种正面解释,而且数学的海洋还是有很多美妙的东西的
作者:
JACK...
时间:
2017-2-14 09:20
楼主是在百科上复制下来的吧,不知有没有研究出斐波那契黄金曲线的电池图
作者:
一夕
时间:
2018-4-17 18:03
tonytcl 发表于 2012-3-4 19:29
看到各种函数就怕怕啊。。。
每日一学,谢谢
欢迎光临 NCF参数化建筑论坛 (http://ncf-china.com/)
Powered by Discuz! X3.2